If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3x-360=0
a = 1; b = -3; c = -360;
Δ = b2-4ac
Δ = -32-4·1·(-360)
Δ = 1449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1449}=\sqrt{9*161}=\sqrt{9}*\sqrt{161}=3\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{161}}{2*1}=\frac{3-3\sqrt{161}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{161}}{2*1}=\frac{3+3\sqrt{161}}{2} $
| 5x-2x-10=0 | | 6/12=9,y | | 2x-4+4x+12=26 | | 3(2x-5)+10=-23 | | 2x+x+1/3x2×+×=560 | | 2×+×+1/3y+×=560 | | x-5+x(x-2)=5x+8 | | (7x-2)=(5x+8) | | -12+70n=77 | | 1/40=0.43/x | | 7x=3x(-2) | | x2=8,281 | | x2=8,218 | | 21x-4-7(5x-6)=8x-4(5x-7 | | 56−y=39 | | F(5)=2x^2-9 | | r/7+ 84=93 | | 28/h=4 | | xX.35=1285 | | -23=-2+-5/3x | | 10-3m=11 | | y/9+2=-3 | | 23=v+12 | | 8=v–4 | | -10=-5/4x | | 1=v–6 | | 20=z+20 | | 12-m=-18 | | X/4+9=c | | 18=13+v | | 4x÷4=12 | | q+9=9 |